
CDC

LCT
pLU j51989

L 4 VERIT~

A Fan-in Algorithm for Distributed Sparse
Numerical Factorization

Cleve Ashcraft,t Stanley C. Eisenstat,
and Joseph W. H. Liu §

Research Report YALEU/DCS/RR-706
15 May 1989

Appi oved to: pu.izi Teleasw

F -

YALE UNIVERSITY
DEPARTMENT OF COMPUTER SCIENCE

, : ,i : t',

- -• i 1 I l Imll IIlllI IIIllIS I I I I

Abstract

We present a colurnn-oriented distributed algorithm for factoring a large sparse
symmetric positive definite matrix on a local-memory parallel processor. Pro-

4. cessors co-operate in computing each column of the Cholesky factor by calcu-
lating independent updates to the corresponding column of the original matrix.
These updates are sent in a fan-in manner to the processor assigned to the
column, which then completes the computation. Experimental results on an
Intel iPSC/2 hypercube demonstrate that the method is effective and achieves
good speedups. Acceso r or D T 9C

N TI S GRA&I DC1orc AB ECTE
U ,3:;,no, rice~d 0 llE E T
U,,3;norc.d 0 S AUG 1 5 1989

B y _._. .

Dt.,tr ibttio'f I

Avaihlbilty Codes

.gist Avid vrdjor

A Fan-in Algorithm for Distributed Sparse
Numerical Factorization

Cleve Ashcraft,t Stanley C. Eisenstal
and Joseph W. H. Liu §

Research Report YALEU/DCS/RR-706
15 May 1989

Approved for public release; distribution is unlimited.

t Department of Computer Science, Yale University, New Haven, Connecticut 06520. This research was
supported in part by the Office of Naval Research under contract N00014-86-K-0310 and the NatinnMl
Science Foundation under grant DCR-85-21451.

I Department of Computer Science and Research Center for Scientific Computation, Yale University, New
Haven, Connecticut 06520. This research was supported in part by the Office of Naval Research under
contract N00014-86-K-0310 and the National Science Foundation under grant DCR-85-21451.

§ Department ul Computer Science, York University, North York, Ontario, Canada M3J 1P3. This research
was supported in part by the Natural Sciences and Engineering Research Council of Canada under grant
A5509.

1. Introduction
With the advent of local-memory parallel processors, many researchers have considered

the problem of solving large sparse linear systems on such architectures 13, 4, 5, 7, 9, 11].
In this paper, we present a new column-oriented distributed algorithm for computing the

4 Cholesky factor of a large sparse symmetric positive definite matrix.
We assume that each processor has been assigned a subset of the columns in the matrix

and is responsible for computing the corresponding set of columns in the Cholesky factor.
We do not address the problem of how to symmetrically reorder the matrix so as to increase
the potential parallelism, nor the problem of how to assign columns to procesSors so as
to balance the workload and reduce communication. See [7] for one approach to these
problems.

Processors co-operate in computing each column of the Cholesky factor by calculating
independent updates to the corresponding column of the original matrix. These updates
are sent in a fan-in manner to the processor assigned to the column, which then com-
pletes the computation. Thus we refer to this as a fan-in algorithm for distributed sparse
numerical factorization.

In Section 2, we briefly review Cholesky factorization by columns and introduce the
notion of an aggregate update column. In Section 3, we describe how the fan-in algorithm
uses aggregate update columns to compute the columns of the Cholesky factor. In Section
4, we present performance results on an Intel iPSC/2 hypercube. The speedups obtained
compare favorably with those reported in [7] and [9].

2. Preliminaries
Let A be an n x n symmetric positive definite matrix and let L be its Cholesky factor,

with entries aj and li respectively. The column-Cholesky method computes L column by
column:

Algorithm 1: Column-Cholesky Factorization

for column j =1 to n do

begin

tj an: lik

,1,

end

Here the temporary vector (t,, tn) T is used only for clarity; its storage can overlap
completely with that of (li ,..., l,) T.

This formulation is applicable to both dense and sparse matrices. But in the sparse
case, the updates .k(1.-,... , 1,,) T to column j are sparse and come only from those pre-
ceding columns k'of L for which lik 9 0. These columns are given precisely by the nonzero
structure of row L,.:

Struct(L,.) = {k I k <, ji, k # 0)

2

2
3

4
0 5

. 6

* . .8

* 0 006!10

Figure 2.1: A 10-by-10 symmetric matrix (only the lower triangle is shown).

For example, consider the symmetric matrix whose lower triangle is shown in Fig-
ure 2.1. Each nonzero in the matrix is represented by a "e", and the matrix has been
chosen so that no fill-in occurs during the factorization. The 7-th column of the Cholesky
factor is computed as

t7\ a77 00
ts = a87 -71 1.72(J174 1-75It
'9 a 9 7 0
tlO alo,7 0

Since Struct(L.) = {1,2,4,5}, both 173 and 176 are zero and columns 3 and 6 do not enter
into the computation.

To describe the fan-in algorithm for distributed sparse numerical factorization, we now
introduce four related notions:

* factor column L.j = (lj,... lj)T;

* update column ljk(lik,''', lnk)T, where lik # 0;

e complete update column EkEStlut(L,.) ljk(ljk,... lIk)T;

* aggregate update column EkEK lIk(ljk,. . , Ink)T, where K C Struct(L,.).

The factor column L.j is an implicit representation of the n - j update columns

lij(l,. ,l,,j)T, i = + 1,.. ,n.

Update columns and complete update columns are special cases of aggregate update
columns where K = {k} and K = Struct(L,.) respectively.

In Algorithm 1, the column-Cholesky method is formulated in terms of complete up-
date columns - the complete update column for column j is computed and subtracted
from (aij,..-, anj)T.

It can also be formulated in terms of update columns - the update columns for column
j are computed and subtracted one at a time. This is the approach used in a nodal sparse
matrix factorization code, and in the distributed algorithm presented in [7] (where the
update columns are sent implicitly as factor columns).

And it can be formulated in terms of aggregate update columns - the update columns
for column j are grouped into independent sets and the corresponding aggregate update
columns are computed and subtracted one at a time. This is the approach used in a su-
pernodal sparse matrix factorization code [2] (where thc groups correspond to supernodes),
and is the basis for the fan-in algorithm presented in the next section.

3

3. A Fan-in Distributed Algorithm
Assume that we are given a mapping of columns to processors, and let map[k] denote

the processor assigned to column k. Then we can write the complete update column
for column j as a sum of aggregate update columns (each corresponding to a different
processor p):

E jk(l,...,ln) = Z uj, p]
kEStruct(Lj.) P

where
U[j, p] = Z ljk(Ik,'" k)T

kErOwbi,pJ

and
rowU,p] = {k E Struct(L,.) j map[k] = p}.

Note that the update columns which appear in u[j,p] all come from factor columns which
are mapped to processor p. Thus uU,p] can be computed without any interprocessor
communication. Of course, if row[j,p] = 0, then u[j,p] = 0 so that

E lik(lik,...,lk)T = 1: uU, p]

kEStruct(L..) p : row-D,p]0

We now state the fan-in algorithm for distributed numerical factorization. This is a
simplification of the actual code, but it does capture the essential ideas.

Algorithm 2: Fan-in Distributed Cholesky Factorization

mycols = {j I map[j] = myname}
for column j := 1 to n do

if row[j, myname] 0 0 or j E mycols then
begin

u :=;
for k E row[j, myname] do

U := U + Ijk(ljk, Ink)T

if j J mycols then
Send aggregate update column u to processor map[j]

else
begin

t : = (ajj,...anj)T - U;

while not all contributions have been received do

Receive an aggregate update column u for column j

from another processor and subtract u from t
L.j:=t / V1j

end

end

Here myname denotes the processor-id of the processor under consideration.
This algorithm works for any mapping of columns to processors. The underlying logic

closely resembles that used in the fan-in scheme of Romine and Ortega [10] for the solution

4

2
3

4
4 5

6

* . .8

* ~ ~ ! 6010

Processor PI P2 P3 PI P2 P3 P P2 P3 PI

Figure 3.1: Wrap mapping of the columns of a 10-by-10 matrix.

Processor p, Processor P2 Processor p3

2 2 2
3 3 3

4 4 4
5 5 5

6 6 * 6j 8] 89 e9 • 9
10 1 0 0 10

update u[7, pl] update u[7,P2] update ut7, P3] = 0

Figure 3.2: Fan-in factorization of column 7.

of dense triangular linear systems.
For simplicity, we have assumed that the aggregate column ulj,p] is sent directly to

the destination processor map[j) and that t is formed by subtracting each of these contri-
butions from (ajj,.- , aj)T . While this approach works irrespective of the connectivity of
the multiprocessor network, one could also take advantage of the underlying topology by
partially summing the aggregate update columns on their way to the destination processor.

To illustrate the operation of Algorithm 2, we use the example from Section 2. Assume
that the columns have been assigned to three processors (pI, P2, and p3) using a simple
wrap mapping (see Figure 3.1). The columns assigned to each processor are shown in
Figure 3.2.

Column 7 of the Cholesky factor belongs to processor pl, and there are contributing
update columns from processors pi and P2, but not from processor p3 (since both 173 and
176 are zero). Processor P2 has to compute its contribution to column 7

u [7,P 2 = 172 + 1 7 s(

S t m iiImi

5

Problem Serial 8 Processors 16 Processors 32 Processors
Time Time Spe eup Time Speedup Time Speedup

31x31 2.74 0.54 5.07 0.39 7.03 0.32 8.56
63x63 23.26 3.86 6.03 2.41 9.65 1.56 14.91
125x63 60.21 9.26 6.50 5.67 10.62 3.52 17.11

Table 1: Parallel factorization time and speedup on hypercube

and send it to processor pi. Processor p1 has to compute its contribution to column 7

U[7,pi] = 171 + 174

subtract the two aggregate update columns

\7 (a77

t = a 7 U[7,p]- u[7,p 2J - a£97
to a10,7

and finally compute the factor column (17,7, 10.,)T .

4. Experimental Results
The distributed fan-in algorithm for sparse Cholesky factorization was implemented

in C and run on an Intel iPSC/2 hypercube with Weitek 1167 floating-point chips.

The test problems were nine-point finite-difference operators on rectangular grids. We
used the nested dissection ordering [6] since it gives optimal-order fill and a well-balanced
elimination tree. We used the subtree-to-subcube mapping [8] to assign processors to
columns since it gives good load balance and reduced communication. Table 1 contains
the timing results and the corresponding speedups for three grid problems. The speedups
are relative to a state-of-the-art serial code, again written in C.

Two other approaches to distributed numerical factorization are:

" the fan-out algorithm, in which each factor column is sent from its originating pro-
cessor to every destination processor that needs it [7];

* a distributed version of the multifrontal method [9].

The fan-out code achieved a speedup of 5.54 when solving an L-shaped grid problem with
2614 unknowns on a 16-processor hypercube [7]. The multifrontal code achieved a speedup
of 9.5 when solving a nine-point problem for a 65 x 65 grid on a 16-processor hypercube
[9]. The speedups given in Table 1 compare favorably with these results and suggest the
potential of the new distributed scheme.

However, one should not draw conclusions on the relative merits of these approaches
based on these statistics since the problems, machines, and baseline sequential codes differ.
A thorough and detailed comparison of the fan-in, fan-out, and distributed multifrontal
methods, and their respective implementations, will be given in [1].

Acknowledgement. We would like to thank Andy Sherman for his helpful comments
and suggestions.

6

Note added in proof. The basic fan-in scheme has been devised independently by
Earl Zmijewski.

References
[1] C. Ashcraft, S. Eisenstat, J. Liu, and A. Sherman, A Comparison of Three Distributed

Sparse Factorization Schemes. Presented at the SIAM Symposium on Sparse Matri-
ces, Salishan Resort, Gleneden Beach, Oregon, May 1989.

[2] C. C. Ashcraft, R. G. Grimes, J. G. Lewis, B. W. Peyton, and H. D. Simon, "Progress
in sparse matrix methods for large linear systems on vector supercomputers," Inter-
national Journal of Supercomputer Applications, 1(4):10-30, 1987.

[3) R. E. Benner, G. R. Montry, and G. G. Weigand, "Concurrent multifrontal methods:
Shared memory, cache, and frontwidth issues," International Journal of Supercom-
puter Applications, 1(3):26-44, 1987.

[4] 1. S. Duff, "Parallel implementation of multifrontal schemes," Parallel Computing,
3:193-204, 1986.

[51 1. S. Duff, N. I. M. Gould, M. Lescrenier, and J. K. Reid, The Multifrontal Method in
a Parallel Environment, Technical Report CSS 211, Harwell Laboratory, Oxfordshire,
England, 1987.

[6] J. A. George, "Nested dissection of a regular finite element mesh," SlAM Journal on
Numerical Analysis, 10:345-363, 1973.

[7] J. A. George, M. Heath, 3. W. H. Liu, and E. Ng, "Sparse Cholesky factorization on a
local-memory multiprocessor," SIAM Journal on Scientific and Statistical Computing,
9:327-340, 1988.

[8] J. A. George, J. W. H. Liu, and E. Ng, "Communication reduction in parallel sparse
Cholesky factorization on a hypercube," In M. T. Heath, Editor, Hypercube Mutip rc -

cessors 1987, pp. 576-586, SIAM, 1987.

[9] R. Lucas, Solving Planar Systems of Equations on Distributed-memory Multiproces-
sor, PhD thesis, Department of Electrical Engineering, Stanford University, Stanford,
California, 1987.

[10] C. H. Romine and J. M. Ortega, "Parallel solution of triangular systems of equations."
Parallel Computing, 6:109-114, 1988.

[11] E. Zmijewski, Sparse Cholesky Factorization on a Multiprocessor, PhD thesis, De-
partment of Computer Science, Cornell University, Ithaca, New York, 1987.

npn mm l l I ~ l ~ I I I I ~

